Oxbow Toolkit: User Guide

Oxbow Developers
oxbow-dev@email.ornl.gov

August 17, 2014

Contents
1 Introduction
2 Installation

3 Using Oxbow Tools
3.1 Using Convenience Scripts L e
3.2 mpiP: MPI Communication profiling
3.3 miami-imix: Micro-operation Instruction Mix PIN Tool
3.3.1 Option 1: Use the do-miami-imix.sh script
3.3.2 Option 2: Run both steps of miami-imix manually
3.4 pin-imix: Opcode Instruction Mix PIN Tool
3.4.1 Running with unmodified binaries o L.
3.4.2 Adding caliper functions o
3.4.3 Running with caliper functions o oL
3.5 membw: Memory Bandwidth Measurement
3.6 reused: Reuse Distance PIN Tool

1 Introduction

HPC architectures will continue to change over the next decade in response to efforts to improve energy
efficiency, reliability, and performance. At this time of significant disruption, it is critically important to
understand the requirements of contemporary and future extreme-scale scientific applications, so that we
can drive or adopt new architectural and software features that satisfy the requirements of our applications.
e.g., integrated GPU and CPU, integrated random number generator, transactional memory, fine-grained

power management, MPT collective offload.

Hence, we believe that it is essential to quantitatively measure, project, and prioritize the resource and

feature requirements of our anticipated workloads on such extreme-scale systems.

The Oxbow toolkit is a collection of tools to empirically characterize application behaviours along a critical

set of dimensions namely computation, communication, memory capacity and access patterns.

2 Installation

For instructions on building and installing Oxbow, see the README included with the Oxbow tools source
distribution. Following these instructions should result in an installation directory structure that includes
a subdirectory for the oxbow tools and (optionally) a subdirectory for third party utilities. The directory

names will be determined by the vendor ID of the compiler used during the build process.

For example, using gnu compilers and installing into the prefix /local/opt/oxbow, will result in an installed

directory structure something like the following:

/local/opt/oxbow/oxbow-tpls-gnu/
/local/opt/oxbow/oxbow-tpls-gnu/binutils-VER
/local/opt/oxbow/oxbow-tpls-gnu/libunwind-VER
/local/opt/oxbow/oxbow-tpls-gnu/papi-VER
/local/opt/oxbow/oxbow-tpls-gnu/pin-VER
/local/opt/oxbow/oxbow-tool-gnu/
/local/opt/oxbow/oxbow-tool-gnu/bin
/local/opt/oxbow/oxbow-tool-gnu/etc
/local/opt/oxbow/oxbow-tool-gnu/include
/local/opt/oxbow/oxbow-tool-gnu/lib
/local/opt/oxbow/oxbow-tool-gnu/share

The etc directory contains a script, envvars.sh to set up your environment for building and running
applications using the Oxbow tools. In section 3, most of the instructions begin by sourcing this script.
For example, using our installation of Oxbow on the Keeneland test system, the user environment for using

Oxbow tools with Intel compilers is set up by running:
$ source /nics/a/proj/oxbow/oxbow-tool-intel/etc/envvars.sh
The other subdirectories of oxbow-tool-vendor follow standard conventions.

e bin : executables

e etc : system specific configuration

include : header files

1ib : libraries

share : documentation

3 Using Oxbow Tools

There are currently five tools available in the Oxbow toolkit.

e mpiP (3.2) profiles MPI communication. Using mpiP requires relinking your binary against the mpiP

libraries in the Oxbow installation.

e miami-imix (3.3) collects information about the mix of micro-operations in instructions executed in
an application. Recompiling is necessary only if you wish to add in start and stop calipers to limit the

code sections profiled.

e pin-imix (3.4) collects information about the mix of opcode classes of instructions executed in an
application. Recompiling is necessary only if you wish to add in start and stop calipers to limit the

code sections profiled.

e membw (3.5) calculates the memory bandwidth (reads and writes) consumed by the application.

Using membw requires adding several library calls to an application and recompiling.

e reused (3.6) outputs a reuse distance histogram for an application memory access. The reuse distance
metric is defined as the number of intervening memory accesses between accesses to a given memory
address. Recompiling is necessary only if you wish to add in start and stop calipers to limit the code

sections profiled.

3.1 Using Convenience Scripts

The sections below contain specific instructions for building and running each tool. Rather than run the

tools directly, you may use convenience scripts. These are installed under:
/path/to/oxbow/oxbow-tool-vendor/bin/util
All of the scripts are named for the tool they invoke, and have similar usage:

$ export PATH=$PATH:/path/to/oxbow/oxbow-tool-vendor/bin/util
$ do-tool-name.sh [FLAGS] OUTDIR -- [MPIRUN] -- COMMAND

These are meant to be common case run scenarios, so the FLAGS here are not specific flags to the tool being
run. There is only one flag value of interest, and it applies only to miami-imix, pin-imix, and reused. For

these tools, —unmarked is used to tell the script that the binary being run does not contain caliper functions.

These tools all produce various output files. Sometimes quite a lot of files are generated, as for multithreaded
applications or MPI processes with many ranks. The OUTDIR argument to the convenience script tells the

tool where to place all output. This directory will also contain a log of the exact commands issued by the

script when invoking the command, as well as any output and error messages. The log will be located in
OUTDIR/do-tool-name.log.

If the application is launched with an mpirun (or aprun or mpiexec) type command, enclose this command
and any arguments between two sets of dashes. Follow the MPIRUN command with the actual command

and arguments to be executed.

Example invocations of convenience scripts

Run an unmodified MPI binary using the pin-imix tool. Put output in myoutdir.

$ do-pin-imix.sh -unmarked myoutdir -- mpirun -n 4 -- ./myprog argl arg2

Run an unmodified serial binary using the reused tool. Put the output in $HOME/work.

$ do-reused.sh -unmarked $HOME/work -- -- echo "hello"

Run a modified serial binary that has caliper functions added for pin-imix. Put the output in $HOME/work.
$ do-pin-imix.sh $HOME/work -- -- ./myprog-modified argl arg?2

Run a binary that has been relinked for mpiP. Put the output in myoutdir.

$ do-mpip.sh myoutdir -- aprun -B -- ./mympi-modified argl arg2

3.2 mpiP: MPI Communication profiling

mpiP is a lightweight profiling library for MPI applications. Because it only collects statistical information
about MPI functions, mpiP generates considerably less overhead and much less data than tracing tools.
All the information captured by mpiP is task-local. It only uses communication during report generation,

typically at the end of the experiment, to merge results from all of the tasks into one output file.

For extensive information about configuring and using mpiP, see the mpiP user guide. It can be accessed

online at:

http://mpip.sourceforge.net/

A copy of the user guide is also installed in Oxbow under:
/path/to/oxbow/oxbow-tool-vendor/share/doc/mpip/

To use mpiP to characterize your application’s communication patterns, you will need to relink your appli-

cation against the mpiP libraries and its third party library dependencies. Add the following link flags:

-L${0XBOW_TOOLS_DIR}/1lib -1lmpiP
-L${LIBUNWIND_DIR}/1ib -lunwind
-L${BINUTILS_DIR}/1ib -1bfd

-L${BINUTILS_DIR}/1ib64 -liberty

The locations of the required libraries can be added to your environment by sourcing the environment setup

script installed in oxbow. For example:

http://mpip.sourceforge.net/

$ source /path/to/oxbow/oxbow-tool-vendor/etc/envvars.sh
$ mpicc -g objl.o obj2.0 -o myprog-mpip -L${0XBOW_TOOLS_DIR}/1lib -1lmpiP \
-L${LIBUNWIND_DIR}/1ib -lunwind -L${BINUTILS_DIR}/lib -1bfd -L${BINUTILS_DIR}/1lib64 -liberty

Once the application is relinked, launch as normal. The application will output the results of profiling the
MPI communication. To configure what output is produced, set the MPIP environment variable. The variable

stores flags with similar syntax to command line flags. See the user guide for information on specific flags.

If you are using the provided do-mpip.sh convenience script, MPIP will be set in the script unless you set it
yourself before running the script. The setting for MPIP in the convenience script will output results for both

collective communication, point-to-point communication, as well as a collective communication matrix.

$ do-mpip.sh myoutdir -- mpirun -n 64 -- ./myprog-mpip argl arg2

3.3 miami-imix: Micro-operation Instruction Mix PIN Tool

The Miami imix tool profiles an application run using the Intel PIN profiling infrastructure. Each instruction
is broken down into micro-operations: inividual reads, writes, integer, float, and SIMD operations. The tool
output prints the counts of each micro-operation type in a comma-seperated-value file. The rows of the csv

indicate which binary module the instructions resulted from.
To obtain the instruction mix, you can either:
1. Use the provided convenience script

2. OR Perform a two step process using the miamicfg tool and the miami-imix tool

3.3.1 Option 1: Use the do-miami-imix.sh script

For code that does not have caliper functions around a section of interest:
$ do-miami-imix.sh -unmarked myoutdir -- mpirun -n 4 -- ./myprog argl arg2
For code that has had caliper functions added:

$ do-miami-imix.sh myoutdir -- mpirun -n 4 -- ./myprog argl arg2

3.3.2 Option 2: Run both steps of miami-imix manually

Obtaining the instruction mix is a two step process.

1. Use the miamicfg tool to collect a control flow graph of the application run

2. Use the miami-imix tool to process the control flow graphs to obtain instruction mix information
Step 1: Control Flow Graph Info

First, you need to obtain the control flow group information by profiling the application in the following

manner.

${0XBOW_TOOLS_DIR}/bin/miamicfg [options] -- <your_application> <your_arguments>

The double dash ”—” is important as it separates the instruction mix tool’s options from the target application

and its parameters.

If this is an MPI application, then place the instruction mix tool in the position where you place your

executable name.
mpirun -np 16 ${0XBOW_TOOLS_DIR}/bin/miamicfg [options] -- <your_application> <your_arguments>

No additional options are required for the wrapper. This step creates a .cfg file per process. By default, the

output files are named: ExecName-MpiRank-ProcessPid.cfg

Optionally, you can resume and pause data collection dynamically. For this, you must modify the applica-
tion’s source code to insert calls to two, user defined empty functions, one for starting and one for stopping

data collection. You can choose any name for these two caliper functions.

Once you identified suitable functions, you should pass use the folowing parameters to the instruction mix

tool.
-q -start <name_of_start_function> -stop <name_of_stop_function>
Step 2: Instruction Mix

Once you have the control flow graph information from step 1, you should specify one resulting .cfg file to

the miami-imix static tool as follows:
$0XBOW_TOOLS_DIR/bin/miami-imix -c <one_cfg file>
This command outputs two files:
e ExecName-PID-imix.csv: The imix file has the restricted instruction categories.
e ExecName-PID-ibins.csv: The ibins file includes a more detailed classification.

Note: The ’.cfg’ files contain information mapped to binary addresses. For this reason, they are valid only
with the original executable that you used to collect those files. The CFG file contains paths to the executable
and all the shared libraries used during the profiling step.

The second step uses those paths to locate the binaries and decode the instructions. You should not delete

or move your binaries before running the second step.

3.4 pin-imix: Opcode Instruction Mix PIN Tool

The pin-imix tool outputs counts of instructions categorized by opcode. This tool can be run with or without

modification to your program.

3.4.1 Running with unmodified binaries

Convenience script use for unmarked code:
$ do-pin-imix.sh -unmarked myoutdir -- mpirun -n 64 -- ./myprog argl arg2

To run directly (no convenience script) on unmarked code:

$ source /path/to/oxbow/oxbow-tool-vendor/etc/envvars.sh
$ mpirun -n 64 ${PIN_DIR}/intel64/bin/pinbin -follow_execv -t \
${0XBOW_TOOLS_DIR}/bin/imix.pin -category -i -- myprog argl arg2

3.4.2 Adding caliper functions

Caliper functions for the various Oxbow tools are provided in an interface library in the oxbow installation.
To use this caliper function library, modify your C/C++ source code with the following;:

#include <oxbow.h>

// unprofiled code section
oxbow_pin_imix_zero(); //reset statistics
oxbow_pin_imix_start(); //start profiling
// profiled code section
oxbow_pin_imix_stop(); //stop profiling

// unprofiled code section

When compiling, add the following include flags to your object compilation:
-I${0XBOW_TOOLS_DIR}/include

Add the following library flags during the link step:
-L${0XBOW_TOOLS_DIR}/1lib -loxbow

The 0XBOW_TOOLS_DIR variable is set using the envvars.sh script. So, an example compilation after adding

caliper functions would be:

$ source /path/to/oxbow/oxbow-tool-vendor/etc/envvars.sh
$ cc -I${0XBOW_TOOLS_DIR}/include -c myprog.c
$ cc -o myprog myprog.o -L${0XBOW_TOOLS_DIR}/1lib -loxbow

3.4.3 Running with caliper functions

Convenience script use for marked code:
$ do-pin-imix.sh myoutdir -- mpirun -n 64 -- ./myprog argl arg2
To run directly (no convenience script) on unmarked code:

$ source /path/to/oxbow/oxbow-tool-vendor/etc/envvars.sh
$ mpirun -n 64 ${PIN_DIR}/intel64/bin/pinbin -follow_execv -t ${0XBOW_TOOLS_DIR}/bin/imix.pin \
-start_address oxbow_pin_imix_marker_start:repeat \
-stop_address oxbow_pin_imix_marker_stop:repeat \
-zero_stats_address oxbow_pin_imix_zero_stats:repeat \
-emit_stats_address oxbow_pin_imix_emit_stats:repeat \

—-category -i -- myprog argl arg2

3.5 membw: Memory Bandwidth Measurement
To use the memory bandwidth tool, you need PAPI installed in your environment. The environment variable
PAPI_DIR must be set to a suitable value for your environment.
Then you can use the following three calipers in your application:
e init_papi_counters(int mpi_rank):

Initializes the PAPI library. Should be called once, before the other calipers are called. The rank is

used as a suffix for the output file name.
e start_papi_counters():

This needs to be inserted at the beginning of the section you wish to profile.
e stop_papi_counters(const char* name):

This needs to be inserted at the end of the section you wish to profile. The 'name’ parameter is used

to identify the code section that you profiled.
You can call the start and stop calipers multiple times. The results are appended to the output file.
When building your application, you should
e Add -I${0XBOW_TOOLS_DIR}/include and ${PAPI DIR}/include to your include options.

e Add -L${0OXBOW_TOOLS_DIR}/1lib -lmembandwidth and ${PAPI DIR}/lib -lpapi to your link

options.
Please ensure that you have the suitable PAPI include and link flags for your platform.
The calipers will create one output file per process. The output files are named:

bandwidth_counts—-<mpi_rank>-<proc_pid>.csv

3.6 reused: Reuse Distance PIN Tool

You can obtain the reuse distance metrics by running;:

$ ${PIN_DIR}/intel64/bin/pinbin -follow_execv -t ${0XBOW_TOOLS_DIR}/bin/reuse_dist_cal \

-- mpiexec -n nprocs your_app
The output files are named hist_reuse_dist_cal__xxx.txt where xxx is the PID of process.
The tool will collect reuse distance for the whole application by default.

Similar to the Memory bandwidth tool, we can insert a few function calls in the application source to mark

a portion of the application we are interested in profiling.
e inst begin instrumentation(): Mark beginning of the computation section of interest.
e inst finish instrumentatin(): Mark end of section.

When building your application, you should

e Add -I${0XBOW_TOOLSDIR}/include to your include options.

e Add -L${0XBOW_TOOLS.DIR}/1ib -lreused to your link options.

Acknowledgment

This research is sponsored by the Office of Advanced Scientific Computing Research in the U.S. Department of
Energy. The paper has been authored by Oak Ridge National Laboratory, which is managed by UT-Battelle,
LLC under Contract #DE-AC05-000R22725 to the U.S. Government. Accordingly, the U.S. Government
retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution,

or allow others to do so, for U.S. Government purposes.

	1 Introduction
	2 Installation
	3 Using Oxbow Tools
	3.1 Using Convenience Scripts
	3.2 mpiP: MPI Communication profiling
	3.3 miami-imix: Micro-operation Instruction Mix PIN Tool
	3.3.1 Option 1: Use the do-miami-imix.sh script
	3.3.2 Option 2: Run both steps of miami-imix manually

	3.4 pin-imix: Opcode Instruction Mix PIN Tool
	3.4.1 Running with unmodified binaries
	3.4.2 Adding caliper functions
	3.4.3 Running with caliper functions

	3.5 membw: Memory Bandwidth Measurement
	3.6 reused: Reuse Distance PIN Tool

