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Abstract—In this work, we present the characterization of a
set of scientific kernels which are representative of the behavior of
fundamental and applied physics applications across a wide range
of fields. We collect performance attributes in the form of micro-
operation mix and off-chip memory bandwidth measurements for
these kernels. Using these measurements, we use two clustering
methodologies to show which applications behave similarly and
to identify unexpected behaviors, without the need to examine
individual numeric results for all application runs. We define a
methodology to combine metrics from various tools into a single
clustering visualization. We show that some kernels experience
significant changes in behavior at varying thread counts due to
system features, and that these behavioral changes appear in the
clustering analysis. We further show that application phases can
be analyzed using clustering to determine which section of an
application is the largest contributor to behavioral differences.

I. INTRODUCTION

Parallel scientific applications present a unique set of
problems to system and architecture design. Large scientific
computational clusters and data centers are created to produce
experimental results for a wide variety of fields, resulting in
highly varied workloads. It is therefore an ongoing problem to
determine which potential system improvements would benefit
which computations.

Existing classifications of parallel application behaviors
attempt to group applications either by algorithm type [1] or
by scientific sub-domain [2]. However, these classifications
do not take into account the variability of algorithms due
to input sets, architectural features, levels of parallelism, or
other transient effects experienced on real systems. To study a
richer characterization of application behaviors, we have built
an infrastructure to support the collection of large numbers of
experimental results of applications in various configurations
[3].

However, with large numbers of experiments, traditional
techniques [4] of comparing numeric performance numbers
for each experiment becomes overwhelming. In this study, we
apply big-data analytic methods to the exploration of perfor-
mance data of applications. In particular, we are interested in
using clustering and grouping methods to classify applications
based on runtime conditions and system requirements.

Recently, a set of representative test applications was
compiled for the purpose of large scale system design and
acquisition [5]. This CORAL collaboration between several
large scientific laboratories collected a set of test applications
to provide a comprehensive characteristic scientific workload.

Though that particular system selection process has now
ended, there is value in continued study of this collection
of test applications. In this work, we present the results
of characterizing the complete set of microkernels from the
CORAL collaboration, listed in table I.

The remainder of this paper is organized as follows. Section
II describes the methodology of application characteristic
collection and clustering methods. Section III provides descrip-
tions of the computational kernels. Section IV presents the
results of the study, followed by a discussion of conclusions
and future directions in section V.

II. ANALYTIC METHODOLOGY AND FRAMEWORK

The results presented here are not a stand-alone project.
This work is part of a larger ongoing project to provide
an infrastructure for application analysis and the storage of
performance experiments. This section briefly summarizes
previous work on the tools used to collect application data,
then explains the new analytic methodology and visualizations
used to extend these tools in this study.

A. Oxbow Toolkit and PADS Storage Infrastructure

The Oxbow project [3] provides a set of tools to charac-
terize application performance beyond traditional methods of
timing sections. One of the primary drivers of this project is
the analysis of co-design proxy application and HPC compu-
tational kernels in order to project how future architectural
features will benefit these applications.

In contrast to timing experiments, which ask “How well
does this program run on this machine”, the Oxbow project
asks “On what kind of machine will run these programs
well”? By using real codes on current architectures, along

TABLE I. COLLECTION OF REPRESENTATIVE SCIENTIFIC KERNELS

Application Language Description
AMGmk C Algebraic multigrid solver

GFMCmk Fortran Solving Schrödinger equation with Monte Carlo
methods

HACCmk C N-body cosmology simulation short force evalua-
tion step

MILCmk C Heavily used kernels from the quantum chromo-
dynamaics (QCD) linear algebra library (QLA)

Nekbone-
kernel

Fortran Poisson equation solver (incompressible Navier-
Stokes solver)

UMTmk Fortran Deterministic radiation transport angular flux dis-
cretization step



TABLE II. INSTRUCTION MICRO-OPERATION DESCRIPTIONS.

Category Description
BrOps Conditional/unconditional branches; direct and indirect jumps
FpOps Scalar floating-point arithmetic
FpSIMD Vector floating-point arithmetic
IntOps Scalar integer arithmetic
IntSIMD Vector integer arithmetic
MemOps Scalar load and store operations
MemSIMD Vector load and store operations
Moves Integer and floating-point register copies; data type and precision

conversions
Misc Other miscellaneous operations, including pop count, memory

fence, atomic operations, privileged operations

with a variety of lightweight profiling tools, this project can
quickly collect characteristic information about a large variety
of applications targeting extreme scale systems.

For this study, we use two tools from Oxbow. The first tool
collects instruction mixes. This tool is built on top of the Intel
PIN dynamic instrumentation toolkit [6]. Since a given CISC
x86 instruction can perform many hardware operations, each
x86 instruction is analyzed and broken down into the micro-
operations listed in table II. These correlate more closely to
generic RISC instructions.

The second tool uses PAPI counters to collect the total
number of off-chip accesses in a given program section. These
counters are used in combination with PAPI counters for cycle
count, and the known cache line size, to generate main memory
bandwidth results in terms of bytes per cycle.

All applications are instrumented with calipers around the
computational sections of interest. The Oxbow code base
allows for using the same calipers for multiple runs with
different tools. This is important because tools using PIN
would interfere with hardware counters, so each application
must be run twice, once to collect instruction mix and again
for memory bandwidth. Using the same calipers for multiple
tools makes it possible to combine multiple runs without the
chance of mismatched sections.

The PADS infrastructure is the data collection backend for
Oxbow. It consists of a MongoDB database for flexible results
collection and easy addition of new tools. This feeds data to
a web front end which visualizes the stored experiments. To
view the current collection of Oxbow experimental data, visit
https://oxbow.ornl.gov, and follow the link to the “Portal”.

B. Hierarchical/Agglomerative Clustering

The first analytic technique used to process the output from
the instruction mix and memory bandwidth measurement tools
is hierarchical/agglomerative clustering.

This type of clustering uses a distance metric to measure
the difference between each experiment. In general, a distance
metric for this type of clustering can be any function. We
defined distance as euclidean distance for three different types
of space:

• Type I: 9D space between points at the coordinates
defined by the percentage-wise micro-op mix of an
experiment.

• Type M: 2D space between points at the coordinates
defined by the bytes per cycle consumed for read and
write bandwidth.

• Type M-I: 9D space between points at the coordinates
defined by instructions per cycle of all non-memory
operation types (7D for micro-op mix), and cache lines
per cycle consumed for read and write bandwidth (2D
for memory bandwidth).

The first two types of analysis use direct output from the
tools. The final analysis type integrates tool outputs in a unique
way. Since micro-op mix is based on PIN tool output, the
timing of calculations is very slow due to instrumentation
overhead, but counts are known. The second tool has much
lower overhead, and so we get more accurate cycle counts and
bandwidths. By combining two experiment runs, we obtain
information that would not be possible with either tool alone.

The following equation defines the distance metric between
two experiments, α and β. Each experiment has a set of
coordinates, X , which are defined by the type of analysis being
performed. √√√√xα∈Xα,xβ∈Xβ∑

(xα − xβ)2

Using the distance equation, a tree is built iteratively. At
every iteration, the geometric center is calculated for each
cluster, which is then used for distance calculations between
clusters. Clusters are joined together with the nearest neigh-
boring cluster, resulting in the final relational hierarchy.

Leaves under a common branch are more similar to each
other than leaves under a different branch. Vertical branch-
ing points represent a relative degree of difference between
branches. Drout and Smith [7] provide a good introduction to
dendrogram interpretation. Section IV will describe in more
detail how to read the dendrograms presented here.

C. Kmeans Clustering

The hierarchy created by agglomerative clustering provides
a good deal of information about relative similarity. However,
as the number of experiments increases, it becomes desirable
to have a more simplistic analytic output, such as a set of
clusters, each of which is a list of similar experiments.

To produce this output, we use k-means clustering. This
method partitions n observations into k clusters, where each
observation belongs to the cluster with the nearest mean.

Formally: Given a set of experimental results,
X1, X2, ...Xn, where each result is a d-dimensional vector,
e.g. 9D vector for Type-I analysis, k-means clustering will
partition the n experiments into k sets S = {s1, s2, ..., sk} so
as to minimize the within cluster sum of squares. So, k-means
will attempt to find:

min

k∑
i=1

∑
x∈si

||x− µi||

where µi is the mean of points in si

The results of our k-means clustering are presented as lists
of 6 clusters along with a simple projection of the clusters



onto 2 dimensional space, using the primary two dimensions
as the projection. We chose k = 6 by examining the curve
of decreasing distortion with increasing k, where distortion is
a metric of how good of a fit could be made for all points
into clusters. For this analysis, distortion did not decrease
significantly past k = 6.

III. APPLICATION DESCRIPTIONS

This section provides descriptions of the kernels used for
this study. All of these kernels were extracted from some larger
proxy application. All but one of these kernels (UMTmk) uses
OpenMP parallelism, and none of them use MPI. These kernels
are therefore all meant for studies of single node performance
issues, such as processing and memory. In all cases, there is
no input set, as the tests are essentially hardcoded. The only
parameter to be varied between runs is the number of threads
being used.

A. AMGmk

AMGmk was derived from the larger benchmark applica-
tion AMG, a parallel algebraic multigrid solver for linear sys-
tems arising from unstructured grids. In AMG, linear systems
are built for 4 test problems: 2 stencil solutions to Laplace type
problems, and 2 PDE solvers with Dirichlet boundary condi-
tions. In AMKmk, these problems are abstracted into three
computational kernels: a compressed sparse row matrix-vector
multiply, an AMG mesh relaxation, and a vector operation to
solve aX + Y .

AMG is written in C and uses OpemMP parallelism.
Runtime of AMGmk is not expected to relate linearly to the
runtime of the full AMG benchmark, but improvements to
AMGmk runtimes can be expected to improve runtimes of
AMG by some amount.

B. GFMCmk

GFMCmk extracts the primary computational kernel from
the GFMC (Green’s Function Monte Carlo). In GFMC, the
nuclear quantum-mechanical wave function is expressed as a
vector of components describing the state of each nucleon.
GFMC starts with an approximate wave-function, then im-
proves it iteratively. Each improvement step requires a new 3A-
dimensional integral, where A is the number of nucleons. This
calculation is an integral of many thousands of dimensions,
done by Monte Carlo method.

GFMCmk is a Fortran code that uses OpenMP parallelism.

C. HACCmk

HACCmk is a kernel of the HACC (Hardware Accelerated
Cosmology Code) framework. HACC was designed to simulate
the evolution of the Universe using N-body methods. HACCmk
calculates short force evaluation by looping over a list of
particles and the particle neighborhood (i.e. particles close
enough to be influenced by short forces).

Each particle force is independently calculated, and the
loop over all particles is parallelized with OpenMP.

D. UMTmk

UMTmk is the most computationally intense single
threaded kernel from the UMT (Unstructured Mesh Transport)
proxy application. The purpose of the full proxy app is to
explore solutions to the problem of obtaining accurate transport
solutions to three dimensional problems modeling the transfer
of thermal protons. This type of solution requires the use of
unstructured grids.

This Fortran microkernel measures performance of a set of
loops in a single function (SNSWP3D) extracted from UMT.
SNSWP3D performs the discretization step for angular fluxes
in a single direction. In the full proxy app, this function is
called within OpenMP loops, so SNSWP3D, and therefore
UMTmk, is completely serial.

E. Nekbone-kernel

The Nekbone-kernel solves A× u = w over some number
of 3D elements using a series of matrix-matrix multiplications.
This computation forms the core of the Nekbone proxy app,
which solves a standard Poisson equation using a spectral
element method conjugate gradient solver with a simple pre-
conditioner. Whereas Nekbone has a setup phase and solution
phase, Nekbone-kernel is only the solution phase.

Nekbone-kernel is a Fortran microkernel that is parallelized
with OpenMP.

F. MILCmk

MILCmk is a set of seven kernels from the MIMD Lattice
Computation (MILC) collaboration code. These are some of
the more heavily used routines extracted from the QCD Linear
Algebra library developed under SciDAC. The purpose of
MILC is to simulate the fundamental theory of strong nuclear
force, quantum chromodynamics (QCD).

This microkernel is written in C, and uses OpenMP for
parallelism. It can be run in either single or double precision
mode. For this study, we ran only in double precision mode.

IV. RESULTS OF KERNEL ANALYSIS

We ran all experiments on a server running Linux CentOS
6, with 16 cores provided by 2, 8-core 3.3 GHz Intel Xeon
Processors with a Sandybridge-EP architecture. Cache size per
processor is 1MB shared L3, 256K L2 per core, and 32K+32K
L1 per core. Total system memory is 24 GB provided by
8x4GB 1600 MHz DDR3 registered DIMMs.

All clustering was done using the SciPy and NumPy python
libraries, along with matplotlib for visualization.

Each of the kernels, with the exception of UMTmk, had
a single parameter to vary: number of OpenMP threads. So,
the total set of all experiments is each kernel run with 1, 2, 4,
8, and 16 threads. In addition, some kernels had subsections
or phases indicated by the software designer. Each phase was
isolated using calipers, and totals for an application are the
sums of all individually measured phases.



Fig. 1. Hierarchical Clustering: Type I Analysis of Micro-operation Mix

A. Kernel analysis using micro-operation mix, DRAM band-
width, and a combination of both

Figure 1 shows the results of hierarchical clustering on the
ratios of micro-operations from table II. Each experiment is
titled with the name of the kernel and the number of threads
used.

To read the dendrogram, note that experiments in the same
subtree are more similar, and the height of each subtree indi-
cates the level of difference. The subtree containing HACCmk
at various threading levels has height of zero. This indicates
that HACCmk instruction mix does not vary at all between
threading levels. The same is true for GFMCmk and Nekbone-
kernel. By contrast, the behavior for AMGmk changes at a
regular rate, with each thread increase behaving most like the
most similar thread count.

The notable result of Figure 1 is the placement of MILCmk
with 16 threads. It is clearly very different in behavior from
MILCmk with lower thread counts. When we examined the
results from this experiment in more detail, we found that when
MILCmk uses 2 physical processors, the threading behavior
changes significantly, resulting in a much larger percentage
of branch operations. By using clustering, we were able to
avoid looking at the large number of numeric results of all
experiments, in which we might have missed this change in
behavior altogether.

Moving onto memory behavior, Figure 2 shows the results
of clustering based on memory bandwidth. This figure is
truncated for readability. The actual height of the root of all
subtrees is located at distance 160. This means that MILCmk
has significantly difference memory behavior than all other
application. Further, the height of the topmost subtree indicates
that MILCmk has more difference in memory behavior at 8
and 16 threads than all other applications. However, we do not

Fig. 2. Hierichal Clustering: Type M Analysis of DRAM Access

Fig. 3. Hierarchical Clustering: Type M-I Combined Tool Analysis

see a large change in memory access behavior at 16 threads in
MILCmk, meaning that the previous observation of instruction
mix changes at 16 threads do not carry over into memory
access behavior.

Upon closer examination, these effects result from the size
of the working set for MILCmk calculations increasing much
faster than other applications in order to provide enough work
for increased thread counts.



Fig. 4. Kmeans Clustering: Type M-I Combined Tool Analysis

Other notable experiments are HACCmk at 1 and 16
threads, which are dissimilar from other thread counts for
that kernel. This results from shared write activity along the
boundaries of thread data sets. In the case of 1 thread, there
is no sharing, so data does not get pushed to DRAM as often
as in the case of 2, 4, and 8 threads, which cause the shared
L3 cache to eject data more often. In the case of 16 threads,
the data sharing required pushing even more data into DRAM
because there are two physical processors.

The final observation of Figure 2 is that the vertical or-
dering of applications has shifted overall. So, while Nekbone-
kernel and AMGmk have very similar computational require-
ments, they have rather different memory requirements. The
next figure will combine results to show which of these factors
has a higher level of difference, i.e. does the memory or the
computation similarity matter more?

Figure 3 combines the results of micro-operation mix and
memory bandwidth. To answer the previous question, given
our weighting algorithm, the differences in memory between
AMGmk and Nekbone-kernel outweigh the similarities in
computational requirements.

Overall, Figure 3 shows a good melding of the results
between Figures 1 and 2, as would be expected. The surprise
here is the change in relative position of UMTmk. Looking
back at the previous figures, UMTmk showed similarities to
MILCmk, GFMCmk, and Nekbone-kernel. However, Figure
3 shows that its computational similarities to AMGmk and
MILCmk carry much more weight than its memory similarities
to GFMCmk and Nekbone-kernel.

Figure 4 uses the same coordinates for experiments as
Figure 3. In this case, the goal is to make 6 clusters using the
k-means procedure described in section II. Under this analysis,
we see that applications generally cluster together, independent
of thread count. However, we see that several experiments fall
into odd groupings. As in previous observations, there is a
pattern of kernels tending to behave differently at single core
counts and at 16 cores (two physical processors).

B. Analysis of kernel subphases

AMGmk and MILCmk kernels both contain subphases,
as indicated by the software developers. All subphases were
individually measured in all experiments. The previous figures
showed results of the sum of all subphases.

Fig. 5. Hierarchical Clustering of Subphases: Type M-I

Figure 5 shows the breakdown of all kernels into sub-
phases. Rather than try to put section names, which made the
figure unreadable, sections are numbered A, B, C... So each
label is comprised of kernel name, section letter, and thread
count. In all kernels other than AMGmk and MILCmk, there
is only a section A.

In the section breakdown, we see that Nekbone-kernel is
most similar to AMGmk section A. This section dominates
the micro-operation mix metrics, which is why Nekbone-
kernel appears most similar to AMGmk in Type I clustering.
However, AMGmk sections B and C dominate the memory
bandwidth metrics, which is why Nekbone-mk is dissimilar
from AMGmk in Type M clustering. The section breakdown
lets us know where to look to see why these applications
appear similar in one clustering, and dissimilar in another.

The large number of sections of MILCmk makes it hard to
process exactly the results from Figure 5. However, it appears



Fig. 6. Kmeans Clustering of Subphases: Type M-I

that for several sections, the thread count is a much better
indicator of similarity than the subsection itself.

Figure 6 provides a more simple visualization in the form
of 6 clusters. Here, it becomes more obvious that MILCmk sec-
tions A, B, C, E, and F have behavioral similarity determined
by thread count, whereas section D and G are similar based
on the phase. This figure also shows that AMGmk sections B
and C are those which have the most variation due to thread
count.

This kind of result would be relevant to a software designer
attempting to understand how to write these algorithms such
that they would perform well on many different system types.
Or, on the other hand, this would be relevant to a system
designer trying to understand why a certain application behaves
unexpectedly at higher levels of parallelism. By being able to
quickly identify which phases of an application are showing
more change, the problem of studying application behavior can
be simplified to studying the behavior of certain sections under
certain conditions.

V. CONCLUSION

In this work, we have shown how the big-data analytical
methods of hierarchical clustering and k-means analysis can be
applied to the study of performance characterization of HPC
computations.

By using the collected performance metrics as points in a
multi-dimensional space, and experiments run under varying
conditions as the individual observations, we were able to iden-
tify patterns of behavior across applications. In particular, these
methods were fast way to identify the pattern of behavioral
change when moving from 1 to 2 physical processors in a
computational node. This type of pattern will be important to
identify as the node architecture of extreme scale systems will
become more complex, with multiple processors, accelerators,
and deeper memory hierarchies.

We were also able to show that analysis of application
sub-phases using clustering methods can show which phases
dominate changes in behavior. This kind of analysis can
provide software developers a faster path to identifying which
parts of a code are the cause of some change in behavior. This
will be an important corollary to the problem of identifying
behaviors on more complex nodes in future extreme scale
systems.

These methods are being integrated into our ongoing work
building a results database of many scientific computations
being run under varying conditions. In future, we will provide
more sophisticated analytic methods and better visualization
tools. Also, as this work has integrated results from multiple
tools to give a unified picture of computational and memory
behavior. Future work will integrate communication behavior
and extend these methods into MPI parallelized codes on
multiple computational nodes.
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